P+F编码器,德国P+F编码器,P+F编码器,德国P+F编码器、39529839、39529829:单荣兵
德国P+F编码器 P+F传感器 P+F接近开关.P+F编码是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数和供电电压等。单路输出是指旋转编码器的输出是组脉冲,而双路输出的旋转编码器输出两组A/B相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
旋转编码器可以用来测量旋转速度,加速度,位置和方向。编码器可以应用在大量的机械工程,例如物料输送、物流和包装。您肯定能够从我们广阔的产品线中找到适合您的应用环境的产品。 在工业自动化域中,旋转编码器可以被用作测量角度、位置、速度和角速度,通过使用齿条、测量轮以及恒力开度仪我们可以测量直线的运动位置。旋转编码器可以将机械的输入转换为电气信号,这个电气信号可以通过计数器、转速表、可编程逻辑控制器(例如PLC)和工业计算机进行处理。P+F编码器,德国P+F编码器,P+F编码器,德国P+F编码器、39529839、39529829:单荣兵
编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。 编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,电刷接触导电区或缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。P+F编码器,德国P+F编码器,P+F编码器,德国P+F编码器、39529839、39529829:单荣兵
利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。1957年美国的R.W.特利普等在美国取得感应同步器的,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。 定尺上的连续绕组的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1 和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长度可达3微米/1000毫米,测角精度可达1″/360°。、39529839、39529829:单荣兵
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
式编码器的每个位置对应个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。(REP)
从接近开关、光电开关到旋转编码器 工业控制中的定位,接近开关、光电开关的应用已经相当成熟了,而且很好用。可是,随着工控的不断发展,又有了新的要求,这样,选用旋转编码器的应用优点就突出了:
定位可以在控制室柔性调整 现场安装的方便和安全、长寿:拳头大小的个旋转编码器,可以测量从几个μ到几十几百米的距离,n个工位,只要解决个旋转编码器的安全安装问题,可以避免诸多接近开关、光电开关在现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。
除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。
对于多个控制工位,只需个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。 如上所述优点,旋转编码器已经越来越广泛地被应用于各种工控场合。、39529839、39529829:单荣兵
旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作找参考点,开机找零等方法。 比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的阵响,它在找参考零点,然后才工作。 这样的方法对有些工控项目比较麻烦,甚不允许开机找零(开机后就要知道准确位置),于是就有了编码器的出现。 型旋转光电编码器,因其每个位置*、抗干扰、无需掉电记忆,已经越来越广泛地应用于各种工业系统中的角度、长度测量和定位控制。 编码器光码盘上有许多道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每个位置,通过读取每道刻线的通、暗,获得组从2的零次方到2的n-1次方的*的2进制编码(格雷码),这就称为n位编码器。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 、39529839、39529829:单荣兵 编码器由机械位置决定的每个位置的*性,它无需记忆,无需找参考点,而且不用直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。型编码器因其高精度,输出位数较多,如仍用并行输出,其每位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接电缆芯数多,由此带来诸多不便和降低可靠性,因此,编码器在多位数输出型,般均选用串行输出或总线型输出,德国的型编码器串行输出zui常用的是SSI(同步串行输出)。 从单圈式编码器到多圈式编码器 旋转单圈式编码器,以转动中测量光码盘各道刻线,以获取*的编码,当转动超过360度时,编码又回到原点,这样就不符合编码*的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈式编码器。 如果要测量旋转超过360度范围,就要用到多圈式编码器。 编码器运用钟表齿轮机械的原理,当码盘旋转时,通过齿轮传动另组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的编码器就称为多圈式编码器,它同样是由机械位置确定编码,每个位置编码*不重复,而无需记忆。 多圈编码器另个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某中间位置作为起始点就可以了,而大大简化了安装调试难度。 、39529839、39529829:单荣兵
©2025 上海乾拓贸易有限公司 版权所有 备案号:沪ICP备09006758号-19 sitemap.xml 总访问量:3020229